236

M. Polychronaki et al.

28. Fedrecheski G, Rabaey JM, Costa LCP, Calcina Ccori PC, Pereira WT, Zuffo MK (2020)

Self-sovereign identity for IoT environments: a perspective. In: 2020 global Internet of Things

summit (GIoTS). Dublin, Ireland, pp 1–6. https://doi.org/10.1109/GIOTS49054.2020.9119664

29. Cooper D, Santesson S, Farrell S, Boeyen S, Housley R, Polk W (2008) Internet X.509 public

key infrastructure certificate and certificate revocation Listl(CRL) profile. RFC Editor. https://

datatracker.ietf.org/doc/html/rfc5280

30. Callas J, Donnerhacke L, Finney H, Shaw D, Thayer R (2007) RFC 4880—OpenPGP message

format. Tools.ietf.org. <https://tools.ietf.org/html/rfc4880>. (Online)

31. Sovrin, Self-sovereign identity and IoT. In: Sovrin foundation SSI in IoT task force, 2020.

https://sovrin.org/library-iot

32. Hyperledger. n.d. Hyperledger indy—hyperledger. <https://www.hyperledger.org/use/hyperl

edger-indy>. (Online)

33. Iota.org. n.d. <https://www.iota.org/>. (Online)

34. Dasgupta D, Shrein J, Gupta K (2019) A survey of blockchain from security perspective. J

Bank Financ Technol 3(1):1–17. https://doi.org/10.1007/s42786-018-00002-6

35. Goldreich O (1993) A taxonomy of proof systems (part 1). SIGACT News 24:2–13. https://

doi.org/10.1145/164996.165000

36. Blum M, Feldman P, Micali S (1988) Non-interactive zero-knowledge and its applications. In:

Proceedings of the twentieth annual ACM symposium on Theory of computing—STOC ’88.

https://doi.org/10.1145/62212.62222

37. Miers I, Garman C, Green M, Rubin AD (2013) Zerocoin: anonymous distributed e-cash from

bitcoin. In: 2013 IEEE symposium on security and privacy. Berkeley, CA, USA, pp 397–411.

https://doi.org/10.1109/SP.2013.34

38. Petkus M (2019) Why and how zk-snark works. CoRR. arXiv:abs/1906.07221. http://arxiv.

org/abs/1906.07221. (Online)

39. Liu D, Ni J, Huang C, Lin X, Shen XS (2020) Secure and efficient distributed network prove-

nance for IoT: a blockchain-based approach. IEEE Internet Things J 7(8):7564–7574. https://

doi.org/10.1109/JIOT.2020.2988481

40. Wu W, Liu E, Gong X, Wang R (2020) Blockchain based zero-knowledge proof of location in

IoT. In: ICC 2020—2020 IEEE international conference on communications (ICC). Dublin,

Ireland, pp 1–7. https://doi.org/10.1109/ICC40277.2020.9149366

41. Chuang B, Guo J, Tsai J, Kuo Y (2017) Multi-graph Zero-knowledge-based authentication

system in Internet of Things. In: 2017 IEEE international conference on communications

(ICC). Paris, pp 1–6. https://doi.org/10.1109/ICC.2017.7996820

42. Springer, (2002) zero knowledge protocols. In: Fundamentals of cryptology. The international

series in engineering and computer science, vol 528. Springer, Boston, MA. https://doi.org/10.

1007/0-306-47053-5_14

43. Syngress, chapter 10—public key infrastructure. In: Dubrawsky I (ed) How to cheat, how to

cheat at securing your network, syngress, 2007, pp 365–394. ISBN 9781597492317. https://

doi.org/10.1016/B978-159749231-7.50013-7

44. Heinrich C Pretty good privacy (PGP). Encycl Cryptogr Secur 466–470. https://doi.org/10.

1007/0-387-23483-7_310

45. Singla A, Bertino, E (2018) Blockchain-based PKI solutions for IoT. In: 2018 IEEE 4th inter-

national conference on collaboration and internet computing (CIC). Philadelphia, PA, USA,

pp 9–15. https://doi.org/10.1109/CIC.2018.00-45

46. Won J, Singla A, Bertino E, Bollella G (2018) Decentralized public key infrastructure for

Internet-of-Things. In: MILCOM 2018—2018 IEEE military communications conference

(MILCOM). Los Angeles, CA, USA, pp 907–913. https://doi.org/10.1109/MILCOM.2018.

8599710

47. Matsumoto S, Reischuk, RM (2017) IKP: turning a PKI around with decentralized automated

incentives. In: 2017 IEEE symposium on security and privacy (SP). San Jose, CA, pp 410–426.

https://doi.org/10.1109/SP.2017.57